Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Sci Rep ; 14(1): 8069, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580675

RESUMO

All attempts to identify male-specific growth genes in humans have failed. This study aimed to clarify why men are taller than women. Microarray-based transcriptome analysis of the cartilage tissues of four adults and chondrocytes of 12 children showed that the median expression levels of SHOX, a growth gene in the pseudoautosomal region (PAR), were higher in male samples than in female samples. Male-dominant SHOX expression was confirmed by quantitative RT-PCR for 36 cartilage samples. Reduced representation bisulfite sequencing of four cartilage samples revealed sex-biased DNA methylation in the SHOX-flanking regions, and pyrosequencing of 22 cartilage samples confirmed male-dominant DNA methylation at the CpG sites in the SHOX upstream region and exon 6a. DNA methylation indexes of these regions were positively correlated with SHOX expression levels. These results, together with prior findings that PAR genes often exhibit male-dominant expression, imply that the relatively low SHOX expression in female cartilage tissues reflects the partial spread of X chromosome inactivation into PAR. Altogether, this study provides the first indication that sex differences in height are ascribed, at least in part, to the sex-dependent epigenetic regulation of SHOX. Our findings deserve further validation.


Assuntos
Condrócitos , Proteínas de Homeodomínio , Criança , Adulto , Humanos , Masculino , Feminino , Condrócitos/metabolismo , Proteínas de Homeodomínio/genética , Proteína de Homoeobox de Baixa Estatura/genética , Metilação de DNA , Epigênese Genética , Cartilagem/metabolismo
2.
Hum Reprod ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38511217

RESUMO

STUDY QUESTION: Do copy-number variations (CNVs) in the azoospermia factor (AZF) regions and monogenic mutations play a major role in the development of isolated (non-syndromic) non-obstructive azoospermia (NOA) in Japanese men with a normal 46, XY karyotype? SUMMARY ANSWER: Deleterious CNVs in the AZF regions and damaging sequence variants in eight genes likely constitute at least 8% and approximately 8% of the genetic causes, respectively, while variants in other genes play only a minor role. WHAT IS KNOWN ALREADY: Sex chromosomal abnormalities, AZF-linked microdeletions, and monogenic mutations have been implicated in isolated NOA. More than 160 genes have been reported as causative/susceptibility/candidate genes for NOA. STUDY DESIGN, SIZE, DURATION: Systematic molecular analyses were conducted for 115 patients with isolated NOA and a normal 46, XY karyotype, who visited our hospital between 2017 and 2021. PARTICIPANTS/MATERIALS, SETTING, METHODS: We studied 115 unrelated Japanese patients. AZF-linked CNVs were examined using sequence-tagged PCR and multiplex ligation-dependent probe amplification, and nucleotide variants were screened using whole exome sequencing (WES). An optimized sequence kernel association test (SKAT-O), a gene-based association study using WES data, was performed to identify novel disease-associated genes in the genome. The results were compared to those of previous studies and our in-house control data. MAIN RESULTS AND THE ROLE OF CHANCE: Thirteen types of AZF-linked CNVs, including the hitherto unreported gr/gr triplication and partial AZFb deletion, were identified in 63 (54.8%) cases. When the gr/gr deletion, a common polymorphism in Japan, was excluded from data analyses, the total frequency of CNVs was 23/75 (30.7%). This frequency is higher than that of the reference data in Japan and China (11.1% and 14.7%, respectively). Known NOA-causative AZF-linked CNVs were found in nine (7.8%) cases. Rare damaging variants in known causative genes (DMRT1, PLK4, SYCP2, TEX11, and USP26) and hemizygous/multiple-heterozygous damaging variants in known spermatogenesis-associated genes (TAF7L, DNAH2, and DNAH17) were identified in nine cases (7.8% in total). Some patients carried rare damaging variants in multiple genes. SKAT-O detected no genes whose rare damaging variants were significantly accumulated in the patient group. LIMITATIONS, REASONS FOR CAUTION: The number of participants was relatively small, and the clinical information of each patient was fragmentary. Moreover, the pathogenicity of identified variants was assessed only by in silico analyses. WIDER IMPLICATIONS OF THE FINDINGS: This study showed that various AZF-linked CNVs are present in more than half of Japanese NOA patients. These results broadened the structural variations of AZF-linked CNVs, which should be considered for the molecular diagnosis of spermatogenic failure. Furthermore, the results of this study highlight the etiological heterogeneity and possible oligogenicity of isolated NOA. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by Grants from the Japan Society for the Promotion of Science (21K19283 and 21H0246), the Japan Agency for Medical Research and Development (22ek0109464h0003), the National Center for Child Health and Development, the Canon Foundation, the Japan Endocrine Society, and the Takeda Science Foundation. The results of this study were based on samples and patient data obtained from the International Center for Reproductive Medicine, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan. The authors have no conflicts of interest to disclose. TRIAL REGISTRATION NUMBER: N/A.

3.
Hum Mol Genet ; 32(14): 2318-2325, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37070740

RESUMO

Pituitary gigantism is a rare endocrinopathy characterized by tall stature due to growth hormone (GH) hypersecretion. This condition is generally linked to a genetic predisposition to tumors that produce GH or GH-releasing hormone (GHRH). Here, we report a Japanese woman who exhibited prominent body growth from infancy to reach an adult height of 197.4 cm (+7.4 standard deviation). Her blood GH levels were markedly elevated. She carried no pathogenic variants in known growth-controlling genes but had a hitherto unreported 752 kb heterozygous deletion at 20q11.23. The microdeletion was located 8.9 kb upstream of GHRH and encompassed exons 2-9 of a ubiquitously expressed gene TTI1 together with 12 other genes, pseudogenes and non-coding RNAs. Transcript analyses of the patient's leukocytes showed that the microdeletion produced chimeric mRNAs consisting of exon 1 of TTI1 and all coding exons of GHRH. In silico analysis detected promoter-associated genomic features around TTI1 exon 1. Genome-edited mice carrying the same microdeletion recapitulated accelerated body growth from a few weeks after birth. The mutant mice developed pituitary hyperplasia and exhibited ectopic Ghrh expression in all tissues examined. Thus, the extreme phenotype of pituitary gigantism in the patient likely reflects GHRH overexpression driven by an acquired promoter. The results of this study indicate that germline submicroscopic deletions have the potential to cause conspicuous developmental abnormalities due to gene overexpression. Furthermore, this study provides evidence that constitutive expression of a hormone-encoding gene can result in congenital disease.


Assuntos
Gigantismo , Feminino , Humanos , Camundongos , Animais , Gigantismo/genética , Hormônio do Crescimento/genética , Éxons/genética , Regiões Promotoras Genéticas , Genoma
4.
Endocrinology ; 164(2)2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36427334

RESUMO

POU Class 1 Homeobox1 (POU1F1/Pou1f1) is a well-established pituitary-specific transcription factor, and causes, when mutated, combined pituitary hormone deficiency in humans and mice. POU1F1/Pou1f1 has 2 isoforms: the alpha and beta isoforms. Recently, pathogenic variants in the unique coding region of the beta isoform (beta domain) and the intron near the exon-intron boundary for the beta domain were reported, although their functional consequences remain obscure. In this study, we generated mice carrying the Pou1f1 c.143-83A>G substitution that recapitulates the human intronic variant near the exon-intron boundary for the beta domain. Homozygous mice showed postnatal growth failure, with an average body weight that was 35% of wild-type littermates at 12 weeks, which was accompanied by anterior pituitary hypoplasia and deficiency of circulating insulin-like growth factor 1 and thyroxine. The results of RNA-seq analysis of the pituitary gland were consistent with reduction of somatotrophs, and this was confirmed immunohistochemically. Reverse transcription polymerase chain reaction of pituitary Pou1f1 mRNA showed abnormal splicing in homozygous mice, with a decrease in the alpha isoform, an increase in the beta isoform, and the emergence of the exon-skipped transcript. We further characterized artificial variants in or near the beta domain, which were candidate positions of the branch site in pre-mRNA, using cultured cell-basis analysis and found that only c.143-83A>G produced transcripts similar to the mice model. Our report is the first to show that the c.143-83A>G variant leads to splicing disruption and causes morphological and functional abnormalities in the pituitary gland. Furthermore, our mice will contribute understanding the role of POU1F1/Pou1f1 transcripts in pituitary development.


Assuntos
Nanismo , Hipopituitarismo , Fator de Transcrição Pit-1 , Animais , Humanos , Camundongos , Nanismo/genética , Nanismo/metabolismo , Hipopituitarismo/genética , Hipófise/metabolismo , Precursores de RNA/metabolismo , Fator de Transcrição Pit-1/genética , Fator de Transcrição Pit-1/metabolismo
5.
J Endocr Soc ; 6(4): bvac022, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35265782

RESUMO

Background: Although intrauterine hyponutrition is regarded as a risk factor for the development of "testicular dysgenesis syndrome" (TDS) in the human, underlying mechanism(s) remain largely unknown. Methods: To clarify the underlying mechanism(s), we fed vaginal plug-positive C57BL/6N female mice with regular food ad libitum throughout the pregnant course (control females) (C-females) or with 50% of the mean daily intake of the C-females from 6.5 dpc (calorie-restricted females) (R-females), and compared male reproductive findings between 17.5-dpc-old male mice delivered from C-females (C-fetuses) and those delivered from R-females (R-fetuses) and between 6-week-old male mice born to C-females (C-offspring) and those born to R-females (R-offspring). Results: Compared with the C-fetuses, the R-fetuses had (1) morphologically normal external genitalia with significantly reduced anogenital distance index, (2) normal numbers of testicular component cells, and (3) significantly low intratesticular testosterone, in association with significantly reduced expressions of steroidogenic genes. Furthermore, compared with the C-offspring, the R-offspring had (1) significantly increased TUNEL-positive cells and normal numbers of other testicular component cells, (2) normal intratesticular testosterone, in association with normal expressions of steroidogenic genes, (3) significantly reduced sperm count, and normal testis weight and sperm motility, and (4) significantly altered expressions of oxidation stress-related, apoptosis-related, and spermatogenesis-related genes. Conclusions: The results, together with the previous data including the association between testosterone deprivation and oxidative stress-evoked apoptotic activation, imply that reduced fetal testosterone production is the primary underlying factor for the development of TDS in intrauterine hyponutrition, and that TDS is included in the clinical spectrum of Developmental Origins of Health and Disease.

6.
J Pediatr Gastroenterol Nutr ; 74(4): e83-e86, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082246

RESUMO

ABSTRACT: Biliary atresia (BA) is a rare disorder of unknown etiology. There is a debate as to whether maternal microchimerism plays a significant role in the development of BA or in graft tolerance after liver transplantation. Here, we performed quantitative-PCR-based assays for liver tissues of children with BA and other diseases. Maternal cells were detected in 4/13 and 1/3 of the BA and control groups, respectively. The estimated number of maternal cells ranged between 0 and 34.7 per 106 total cells. The frequency and severity of maternal microchimerism were similar between the BA and control groups, and between patients with and without acute rejection of maternal grafts. These results highlight the high frequency of maternal microchimerism in the liver. This study provides no evidence for roles of microchimerism in the etiology of BA or in graft tolerance. Thus, the biological consequences of maternal microchimerism need to be clarified in future studies.


Assuntos
Atresia Biliar , Transplante de Fígado , Atresia Biliar/etiologia , Atresia Biliar/cirurgia , Criança , Quimerismo , Humanos , Fígado , Transplante de Fígado/efeitos adversos
7.
J Endocr Soc ; 5(10): bvab126, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34396024

RESUMO

CONTEXT: Recent studies have revealed that every eukaryotic cell contains several membraneless organelles created via liquid-liquid phase separation (LLPS). LLPS is a physical phenomenon that transiently compartmentalizes the subcellular space and thereby facilitates various biological reactions. LLPS is indispensable for cellular functions; however, dysregulated LLPS has the potential to cause irreversible protein aggregation leading to degenerative disorders. To date, there is no systematic review on the role of LLPS in endocrinology. EVIDENCE ACQUISITION: We explored previous studies which addressed roles of LLPS in living cells, particularly from the viewpoint of endocrinology. To this end, we screened relevant literature in PubMed published between 2009 and 2021 using LLPS-associated keywords including "membraneless organelle," "phase transition," and "intrinsically disordered," and endocrinological keywords such as "hormone," "ovary," "androgen," and "diabetes." We also referred to the articles in the reference lists of identified papers. EVIDENCE SYNTHESIS: Based on 67 articles selected from 449 papers, we provided a concise overview of the current understanding of LLPS in living cells. Then, we summarized recent articles documenting the physiological or pathological roles of LLPS in endocrine cells. CONCLUSIONS: The discovery of LLPS in cells has resulted in a paradigm shift in molecular biology. Recent studies indicate that LLPS contributes to male sex development by providing a functional platform for SOX9 and CBX2 in testicular cells. In addition, dysregulated LLPS has been implicated in aberrant protein aggregation in pancreatic ß-cells, leading to type 2 diabetes. Still, we are just beginning to understand the significance of LLPS in endocrine cells.

8.
Hum Genome Var ; 8(1): 5, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531459

RESUMO

Although NDNF was recently reported as a novel causative gene for congenital hypogonadotropic hypogonadism (CHH), this conclusion has yet to be validated. In this study, we sequenced NDNF in 61 Japanese CHH patients. No variants, except for nine synonymous substitutions that appear to have no effect on splice-site recognition, were identified in NDNF coding exons or flanking intronic sequences. These results indicate the rarity of NDNF variants in CHH patients and highlight the genetic heterogeneity of CHH.

9.
Eur J Med Genet ; 63(1): 103626, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30711679

RESUMO

10q26 deletion syndrome is caused by a rare chromosomal abnormality, and patients with this syndrome present with an extensive and heterogeneous phenotypic spectrum. Several genes, such as EMX2 and FGFR2, were identified as the cause genital anomalies and facial dysmorphism in 10q26 deletion syndrome. However, the critical region for 10q26 deletion syndrome is not determined and the precise relationships between the causative genes and the phenotypes are still controversial. WD repeat domain 11 (WDR11), located at 10q25-26, was recently identified as a causative gene in hypogonadotropic hypogonadism, but other clinical phenotypes caused by WDR11 variants have not been identified. In this study, we have identified a WDR11 missense mutation, NM_018117.11: c.2108G > A; p.(Arg703Gln); ClinVar accession SCV000852064, in a two-year-old boy with severe growth retardation, ventricular septal defect, and coloboma symptoms. The case suggests that WDR11 is partially responsible for the clinical features of 10q26 deletion syndrome and provides novel insights into the pathophysiology of this syndrome.


Assuntos
Coloboma/genética , Transtornos do Crescimento/genética , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas/genética , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 10/genética , Coloboma/patologia , Predisposição Genética para Doença , Transtornos do Crescimento/patologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Proteínas de Homeodomínio/genética , Humanos , Masculino , Fenótipo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Fatores de Transcrição/genética , Anormalidades Urogenitais/genética , Anormalidades Urogenitais/patologia
10.
Cytogenet Genome Res ; 159(2): 66-73, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31639787

RESUMO

The genomic region at 15q11.2q13 represents a hotspot for copy-number variations (CNVs) due to nonallelic homologous recombination. Previous studies have suggested that the development of 15q11.2q13 deletions in sperm may be affected by seasonal factors because patients with Prader-Willi syndrome resulting from 15q11.2q13 deletions on paternally derived chromosomes showed autumn-dominant birth seasonality. The present study aimed to determine the frequency of 15q11.2q13 CNVs in sperm of healthy men and clarify the effects of various environmental factors, i.e., age, smoking status, alcohol intake, and season, on the frequency. Thirty volunteers were asked to provide semen samples and clinical information once in each season of a year. The rates of 15q11.2q13 CNVs were examined using 2-color FISH. The results were statistically analyzed using a generalized estimating equation with negative binomial distribution and a log link function. Consequently, informative data were obtained from 83 samples of 26 individuals. The rates of deletions and duplications ranged from 0.04 to 0.48% and from 0.08 to 0.30%, respectively. The rates were not correlated with the age, smoking status, or alcohol intake. Sperm produced in winter showed 1.2 to 1.4-fold high rates for both deletions and duplications as compared with sperm produced in the other seasons; however, there was no significant difference. These results demonstrate high and variable CNV rates at 15q11.2q13 in sperm of healthy men. These CNVs appear to occur independent of the age, smoking status, or alcohol intake, while the effect of season remains inconclusive. Our results merit further validation.


Assuntos
Cromossomos Humanos Par 15/genética , Variações do Número de Cópias de DNA/genética , Espermatozoides/fisiologia , Adulto , Deleção Cromossômica , Duplicação Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome de Prader-Willi/genética , Adulto Jovem
11.
BMC Med Genomics ; 12(1): 77, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138192

RESUMO

BACKGROUND: The co-occurrence of multiple de novo copy number variations (CNVs) is a rare phenomenon in the human genome. Recently, an "organismal CNV mutator phenotype" has been reported to result in transient genomic instability introducing multiple de novo CNVs in primary oocytes and early-stage zygotes. These findings opened a new area of human genome research. METHODS: We performed genome-wide copy number analysis for ~ 2100 individuals with various congenital defects. Furthermore, extensive molecular analyses, including synthetic long-read whole-genome sequencing and haplotype-phasing, were carried out for an individual with multiple de novo CNVs. RESULTS: A boy was found to have de novo rearrangements on five chromosomes. The rearrangements comprised simple duplication and inversion as well as chaotic changes, all of which affected paternally derived chromosomes. Postzygotic genomic instability was ruled out. The duplicated regions on 6q and 13q contained both diallelic and triallelic loci, indicating that the genomic rearrangements were initially created during premeiotic mitosis and subsequently modified by physiological cross-over during meiosis I. Breakpoints of the rearrangements were indicative of non-homologous end joining, replication-based errors, and/or chromothripsis. The mutagenic event was independent of specific local DNA motifs or de novo point mutations, but may be driven by spermatogenesis-specific factors. CONCLUSIONS: These results indicate that during spermatogenesis, a transient multifocal genomic crisis can introduce several chromothriptic and non-chromothriptic changes into the genome. These findings broaden the concept of the "organismal CNV mutator phenotype". This study provides insights into mechanisms for altering the global chromosomal architecture of human embryos.


Assuntos
Cromotripsia , Rearranjo Gênico/genética , Genômica , Espermatozoides/metabolismo , Testículo/citologia , Zigoto , Adulto , Variações do Número de Cópias de DNA , Feminino , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade
12.
Mol Genet Genomic Med ; 7(6): e730, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31060112

RESUMO

BACKGROUND: 21-hydroxylase deficiency (21-OHD) is caused due to CYP21A2 gene variant. In males, the excess androgens produce varying degrees of penile enlargement and small testes. CHARGE syndrome (CS) has a broad spectrum of symptoms. In males, genital features such as micropenis and cryptorchidism are found in 48% of CS. There are no reports of patients with combined 21-OHD and CS; therefore, it is unknown whether the external genitalia shows penile enlargement or micropenis with/without cryptorchidism. CASE: A boy, born at 37 weeks and 5 days of gestational age with no consanguineous marriage, was admitted to our hospital due to congenital cleft lip, cleft palate, micropenis, cryptorchidism, and a ventricular septal defect. He had severe hyponatremia and hyperkalemia on day 10. He was diagnosed to have 21-OHD and CS. His external genitalia demonstrated both cryptorchidism and micropenis, but not penile enlargement. METHODS: DNA was extracted from peripheral leukocytes using standard procedures. Sanger sequence was performed in CYP21A2. Exome sequence was performed, and then, Sanger sequence was performed around variant in CHD7. RESULTS: Genetic screening for CYP21A2 gene was performed and compound heterozygous variants of c.293-13A/C>G (IVS2-13A/C>G) and c.518T>A (p.I172N) were detected in chromosome 6p21.3. His mother had been heterozygous variant of c.293-13A/C>G, and his father had been heterozygous variant of c.518T>A. Simultaneously, a de novo splicing acceptor alteration in c.7165-4 A>G, in chromodomain helicase DNA binding protein-7 (CHD7), located in chromosome 8q12 was detected, and the patient was diagnosed with 21-OHD and CS. CONCLUSION: Although these two disorders exhibit different modes of inheritance and their co-morbidity is extremely rare, we encountered one male patient who suffered from both 21-OHD and CS.


Assuntos
Síndrome CHARGE/genética , Criptorquidismo/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Doenças dos Genitais Masculinos/genética , Pênis/anormalidades , Esteroide 21-Hidroxilase/genética , Síndrome CHARGE/patologia , Criptorquidismo/patologia , Doenças dos Genitais Masculinos/patologia , Humanos , Lactente , Masculino , Mutação , Pênis/patologia
13.
Hum Mol Genet ; 28(14): 2319-2329, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30985895

RESUMO

Disorders of sex development (DSDs) are defined as congenital conditions in which chromosomal, gonadal or anatomical sex is atypical. In many DSD cases, genetic causes remain to be elucidated. Here, we performed a case-control exome sequencing study comparing gene-based burdens of rare damaging variants between 26 DSD cases and 2625 controls. We found exome-wide significant enrichment of rare heterozygous truncating variants in the MYRF gene encoding myelin regulatory factor, a transcription factor essential for oligodendrocyte development. All three variants occurred de novo. We identified an additional 46,XY DSD case of a de novo damaging missense variant in an independent cohort. The clinical symptoms included hypoplasia of Müllerian derivatives and ovaries in 46,XX DSD patients, defective development of Sertoli and Leydig cells in 46,XY DSD patients and congenital diaphragmatic hernia in one 46,XY DSD patient. As all of these cells and tissues are or partly consist of coelomic epithelium (CE)-derived cells (CEDC) and CEDC developed from CE via proliferaiton and migration, MYRF might be related to these processes. Consistent with this hypothesis, single-cell RNA sequencing of foetal gonads revealed high expression of MYRF in CE and CEDC. Reanalysis of public chromatin immunoprecipitation sequencing data for rat Myrf showed that genes regulating proliferation and migration were enriched among putative target genes of Myrf. These results suggested that MYRF is a novel causative gene of 46,XY and 46,XX DSD and MYRF is a transcription factor regulating CD and/or CEDC proliferation and migration, which is essential for development of multiple organs.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual/genética , Transtorno 46,XY do Desenvolvimento Sexual/genética , Proteínas de Membrana/genética , Fatores de Transcrição/genética , Transtornos 46, XX do Desenvolvimento Sexual/patologia , Adolescente , Estudos de Casos e Controles , Movimento Celular , Proliferação de Células , Pré-Escolar , Estudos de Coortes , Biologia Computacional , Transtorno 46,XY do Desenvolvimento Sexual/patologia , Feminino , Ontologia Genética , Gônadas/crescimento & desenvolvimento , Haploinsuficiência , Humanos , Masculino , Proteínas de Membrana/metabolismo , Mutação , Mutação de Sentido Incorreto , Análise de Célula Única , Fatores de Transcrição/metabolismo , Sequenciamento do Exoma , Adulto Jovem
14.
Bone ; 120: 219-231, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30389610

RESUMO

A set of key developmental genes is essential for skeletal growth from multipotent progenitor cells at weaning. Polycomb group proteins, which regulate such genes contributes to the cell lineage commitment and subsequent differentiation via epigenetic chromatin modification and remodeling. However, it is unclear which cell lineage and gene sets are targeted by polycomb proteins during skeletal growth. We now report that mice deficient in a polycomb group gene Cbx2cterm/cterm exhibited skeletal hypoplasia in the tibia, femur, and cranium. Long bone cavities in these mice contained fewer multipotent mesenchymal stromal cells. RNA-sequencing of bone marrow cells showed downregulation and upregulation of osteoblastic and adipogenic genes, respectively. Furthermore, the expression levels of genes specifically expressed in B-cell precursors were decreased. Forced expression of Cbx2 in Cbx2cterm/cterm bone marrow stromal cell recovered fibroblastic colony formation and suppressed adipogenic differentiation. Collectively, our results suggest that Cbx2 controls the maintenance and adipogenic differentiation of mesenchymal stromal cells in the bone marrow.


Assuntos
Adipogenia , Osso e Ossos/citologia , Osteoblastos/citologia , Osteoblastos/metabolismo , Complexo Repressor Polycomb 1/genética , Animais , Animais Recém-Nascidos , Fêmur/anormalidades , Regulação da Expressão Gênica , Lâmina de Crescimento/anormalidades , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Complexo Repressor Polycomb 1/metabolismo , Tíbia/anormalidades
15.
Hum Genome Var ; 5: 18006, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29531775

RESUMO

CHARGE syndrome is a rare autosomal dominant disease that is typically caused by heterozygous CHD7 mutations. A de novo variant in a CHD7 splicing acceptor site (NM_017780.3:c.7165-4A>G) was identified in a Japanese boy with CHARGE syndrome. This variant has been considered to be an "unclassified variant" due to its position outside the consensus splicing sites. In this study, abnormal splicing derived from this known variant was confirmed by cDNA sequencing.

16.
Endocr J ; 64(10): 947-954, 2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-28768959

RESUMO

Although mutations in ACAN, FGFR3, NPR2, and SHOX typically lead to skeletal dysplasia, and mutations in GHRHR, GH1, GHR, STAT5B, IGF1, IGFALS, and IGF1R usually underlie hormonal defects of the growth hormone (GH)-insulin-like growth factor 1 (IGF1) axis, such mutations have also been identified in patients with idiopathic short stature (ISS). Of these, SHOX abnormalities are known to account for a certain percentage of ISS cases, whereas the frequency of mutations in the other 10 genes in ISS cohorts remains unknown. Here, we performed next-generation sequencing-based mutation screening of the 10 genes in 86 unrelated Japanese ISS patients without SHOX abnormalities. We searched for rare protein-altering variants. The functional significance of the identified variants was assessed by in silico analyses. Consequently, we identified 18 heterozygous rare variants in 19 patients, including four probable damaging variants in ACAN, six pathogenicity-unknown variants in FGFR3, GHRHR, GHR, and IGFALS, and eight possible benign variants. Pathogenic variants in NPR2, GH1, and IGF1 were absent from our cohort. Unlike previously reported patients with ACAN mutations, our four patients with ACAN variants manifested non-specific short stature with age-appropriate or mildly delayed bone ages, and had parents of normal stature. These results indicate that ACAN mutations can underlie ISS without characteristic skeletal features, and that such mutations are possibly associated with de novo occurrence or low penetrance. In addition, our data imply that mutations in FGFR3, NPR2, and GH-IGF1 axis genes play only limited roles in the etiology of ISS.


Assuntos
Agrecanas/genética , Predisposição Genética para Doença , Transtornos do Crescimento/genética , Mutação , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptores de Neuropeptídeos/genética , Receptores de Hormônios Reguladores de Hormônio Hipofisário/genética , Agrecanas/química , Agrecanas/metabolismo , Substituição de Aminoácidos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Criança , Pré-Escolar , Estudos de Coortes , Biologia Computacional , Bases de Dados Genéticas , Sistemas Especialistas , Feminino , Estudos de Associação Genética , Testes Genéticos , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Transtornos do Crescimento/sangue , Transtornos do Crescimento/metabolismo , Transtornos do Crescimento/fisiopatologia , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Japão , Masculino , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor IGF Tipo 1 , Receptores de Neuropeptídeos/química , Receptores de Neuropeptídeos/metabolismo , Receptores de Hormônios Reguladores de Hormônio Hipofisário/química , Receptores de Hormônios Reguladores de Hormônio Hipofisário/metabolismo , Receptores de Somatomedina/química , Receptores de Somatomedina/genética , Receptores de Somatomedina/metabolismo , Fator de Transcrição STAT5/química , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo
17.
Hum Genome Var ; 4: 17008, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28326187

RESUMO

Nuclear receptor subfamily 5, group A, member 1 (NR5A1) is a nuclear receptor involved in gonadal and adrenal development. We identified a novel C-terminally truncating NR5A1 mutation, p.Leu423Trpfs*7, in dizygotic twins with 46,XY disorders of sex development. Our results highlight the functional importance of C-terminal region of NR5A1 and indicate that NR5A1 mutations can be associated with intrafamilial phenotypic variations, progressive testicular dysfunction, hypogonadotropic hypogonadism, and borderline adrenal dysfunction.

18.
Biol Sex Differ ; 7: 56, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27833742

RESUMO

NR5A1 is the key regulator of adrenal and gonadal development in both humans and mice. Recently, a missense substitution in human NR5A1, p.R92W, was shown to underlie gonadal dysgenesis in genetic males and testicular formation in genetic females. Here, we investigated the phenotypic effects of the p.R92W mutation on murine development. Mice carrying the p.R92W mutation manifested a similar but milder phenotype than that of the previously described Nr5a1 knockout mice. Importantly, mutation-positive XX mice showed no signs of masculinization. These results, together with prior observations, indicate that the p.R92W mutation in NR5A1/Nr5a1 encodes unique molecules that disrupt male gonadal development in both humans and mice and induces testicular formation specifically in human females. Our findings provide novel insights into the conservation and divergence in the molecular networks underlying mammalian sexual development.

19.
Mol Genet Genomic Med ; 3(6): 550-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26740947

RESUMO

SOX9 haploinsufficiency underlies campomelic dysplasia (CD) with or without testicular dysgenesis. Current understanding of the phenotypic variability and mutation spectrum of SOX9 abnormalities remains fragmentary. Here, we report three patients with hitherto unreported SOX9 abnormalities. These patients were identified through molecular analysis of 33 patients with 46,XY disorders of sex development (DSD). Patients 1-3 manifested testicular dysgenesis or regression without CD. Patients 1 and 2 carried probable damaging mutations p.Arg394Gly and p.Arg437Cys, respectively, in the SOX9 C-terminal domain but not in other known 46,XY DSD causative genes. These substitutions were absent from ~120,000 alleles in the exome database. These mutations retained normal transactivating activity for the Col2a1 enhancer, but showed impaired activity for the Amh promoter. Patient 3 harbored a maternally inherited ~491 kb SOX9 upstream deletion that encompassed the known 32.5 kb XY sex reversal region. Breakpoints of the deletion resided within nonrepeat sequences and were accompanied by a short-nucleotide insertion. The results imply that testicular dysgenesis and regression without skeletal dysplasia may be rare manifestations of SOX9 abnormalities. Furthermore, our data broaden pathogenic SOX9 abnormalities to include C-terminal missense substitutions which lead to target-gene-specific protein dysfunction, and enhancer-containing upstream microdeletions mediated by nonhomologous end-joining.

20.
PLoS One ; 8(6): e68050, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840809

RESUMO

Development of the testis begins with the expression of the SRY gene in pre-Sertoli cells. Soon after, testis cords containing Sertoli and germ cells are formed and fetal Leydig cells subsequently develop in the interstitial space. Studies using knockout mice have indicated that multiple genes encoding growth factors and transcription factors are implicated in fetal Leydig cell differentiation. Previously, we demonstrated that the Arx gene is implicated in this process. However, how ARX regulates Leydig cell differentiation remained unknown. In this study, we examined Arx KO testes and revealed that fetal Leydig cell numbers largely decrease throughout the fetal life. Since our study shows that fetal Leydig cells rarely proliferate, this decrease in the KO testes is thought to be due to defects of fetal Leydig progenitor cells. In sexually indifferent fetal gonads of wild type, ARX was expressed in the coelomic epithelial cells and cells underneath the epithelium as well as cells at the gonad-mesonephros border, both of which have been described to contain progenitors of fetal Leydig cells. After testis differentiation, ARX was expressed in a large population of the interstitial cells but not in fetal Leydig cells, raising the possibility that ARX-positive cells contain fetal Leydig progenitor cells. When examining marker gene expression, we observed cells as if they were differentiating into fetal Leydig cells from the progenitor cells. Based on these results, we propose that ARX acts as a positive factor for differentiation of fetal Leydig cells through functioning at the progenitor stage.


Assuntos
Diferenciação Celular/genética , Genes Homeobox/genética , Proteínas de Homeodomínio/genética , Células Intersticiais do Testículo/fisiologia , Diferenciação Sexual/genética , Células-Tronco/patologia , Fatores de Transcrição/genética , Animais , Proliferação de Células , Células Epiteliais/fisiologia , Epitélio/fisiologia , Feto/fisiologia , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/fisiologia , Gônadas/crescimento & desenvolvimento , Gônadas/fisiologia , Masculino , Mesonefro/crescimento & desenvolvimento , Mesonefro/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Testículo/crescimento & desenvolvimento , Testículo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...